

Seminar Large-scale Data Engineering (LDE) 03 Experiments, Reproducibility & Presentations

Dr.-Ing. Patrick Damme

Technische Universität Berlin Berlin Institute for the Foundations of Learning and Data Big Data Engineering (DAMS Lab)

Last update: May 8, 2023

[**Credit:** Based on "Introduction to Scientific Writing"/ "03 Experiments and Reproducibility" by Matthias Boehm (TU Graz, winter 2021/22)]

Announcements/Org

Hybrid Setting with Optional Attendance

- In-person in TEL 811 (~20 seats)
- Virtual via zoom

https://tu-berlin.zoom.us/j/67376691490?pwd=NmlvWTM5VUVWRjU0UGI2bXhBVkxzQT09

Finished Selection of Seminar Topics/Papers

All participants have selected their seminar topic

Exam Registration via MTS

- For seminar-only, project-only, seminar+project modules LDE
- Currently being set up, not open yet
- Details will be announced on the ISIS page in the next days

Agenda

berlin

- Experiments and Result Presentation
- Reproducibility and RDM
- Scientific Presentations

Experiments and Result Presentation

In Computer Science (Data Management)

[**Credit:** Ioana Manolescu, Stefan Manegold: Performance Evaluation in Database Research: Principles and Experiences, **ICDE 2008**]

Motivation

- Postpone implementation and experiments till last before the deadline
- No feedback, no reaction time (experiments require many iterations)
- Karl Popper: falsifiability of scientific results

Continuous Experiments

- Run experiments during survey / prototype building
- Systematic experiments \rightarrow observations and ideas for improvements
- Don't be afraid of throwing away prototypes that don't work

Good Research Fires Itself

- Initial experiments give directions for further improvements
- Problem-oriented methodology

Types of Experiments

#1 Exploratory Experiments

- Tests for functional correctness
- Unstructured experiments for initial feedback \rightarrow eval feasibility

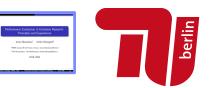
#2 Micro Benchmarks

- Measure specific aspects in controlled and understandable scope
- Bottom-up approach

#3 Benchmarks

- Evaluate on community/own benchmarks
- Examples: TPC-C, TPC-H, TPC-DS, JOB, MLPerf

#4 End-to-end Applications


- Evaluate in larger scope of real datasets and query workloads
- Examples: Customer workload, ML pipelines (dataprep, training, eval)

From Idea to Experiments

[I. Manolescu, S/ Manegold: Performance Evaluation in Database Research: Principles and Experiences, **ICDE 2008**]

Overview

- Proper planning helps to keep you from "getting lost"
- Repeatable experiments simplify your own work
- There is no single way how to do it right
- There are many ways how to do it wrong

Basic Planning

- Which data / data sets should be used?
- Which workload / queries should be run?
- Which hardware & software should be used?
- Metrics: What to measure? How to measure?
- Comparison: How to compare? CSI: How to find out what is going on?

Dataset Selection

Synthetic Data

Representative of real data distributions?

"Real" Data Repositories

- Wide selection of available datasets w/ different characteristics
- UCI ML Repository: <u>https://archive.ics.uci.edu/ml/index.php</u>
- Florida Sparse Matrix Collection: <u>https://sparse.tamu.edu/</u>

Generate data with specific data characteristics

Systematic evaluation w/ data size, sparsity, etc.

- Google dataset search: <u>https://datasetsearch.research.google.com/</u>
- Common Datasets in ML: ImageNet, Mnist, CIFAR, KDD, Criteo
- Common Datasets in DM: Census, Taxi, Airlines, DBLP, benchmarks etc.

Representative for variety of workloads / common case?

Benchmarks

Overview

- Community- and organization-driven creation of agreed benchmarks
- Benchmarks can define a field and foster innovation

#1 Data Management

- Query processing: 007, TPC-C, TPC-E, TPC-H, TPC-DS (w/ audit)
- Join ordering: JOB

#2 "Big Data"

- MR/Spark: BigBench, HiBench, SparkBench
- Array Databases: GenBase

#3 Machine Learning Systems

SLAB, DAWNBench, MLPerf, MLBench, AutoML Bench, Meta Worlds, TPCx-AI

[Michael J. Carey, David J. DeWitt, Jeffrey F. Naughton: The oo7 Benchmark. **SIGMOD 1993**]

[http://www.tpc.org/tpch/]

(See AMLS course for details)

Benchmarks, cont.

[MLPerf v0.6: <u>https://mlperf.org/training-results-0-6/</u>]

96 x DGX-2H = 96 * 16 = 1536 V100 GPUs → ~ 96 * \$400K = **\$35M - \$40M**

[https://www.forbes.com/sites/tiriasresearch/2019/ 06/19/nvidia-offers-a-turnkey-supercomputer-thedgx-superpod/#693400f43ee5]

Close	ed Divis	ion Times												_			
								Benchmark	results (minu	utes)							
							•	lmage classifi- cation	Object detection, light- weight	Object detection, heavy-wt.	Translation , recurrent	Translation , non-recur.		Reinforce- ment Learning			
								ImageNet	сосо	сосо	WMT E-G	WMT E-G	MovieLens- 20M	Go			
	Submitter	r System	Processor	#	Accelerator	#	Software	ResNet-50 v1.5	SSD w/ ResNet-34	Mask- R-CNN	NMT	Transformer	NCF	Mini Go	Details	Code	Notes
vailab	le in cloud	l.															
).6-1	Google	TPUv3.32			TPUv3	16	TensorFlow, TPU 1.14.1.dev	42.19	12.61	107.03		10.20	[1]		details	code	none
.6-2	Google	TPUv3.128			TPUv3	64	TensorFlow, TPU 1.14.1.dev	11.22				3.85	[1]		details	code	none
.6-3	Google	TPUv3.256			TPUv3	128	TensorFlow, TPU 1.14.1.dev	6.86	2.76	35.60	3.53	2.81	[1]		details	code	none
.6-4	Google	TPUv3.512			TPUv3	256	TensorFlow, TPU 1.14.1.dev	3.85	1.79		2.51	1.58	[1]		details	<u>code</u>	none
.6-5	Google	TPUv3.1024			TPUv3	512	TensorFlow, TPU 1.14.1.dev	2.27	1.34		2.11	1.05	[1]		details	<u>code</u>	none
6-6	Google	TPUv3.2048			TPUv3	1024	TensorFlow, TPU 1.14.1.dev	1.28	1.21			0.85	[1]		details	<u>code</u>	none
vailab	le on-prem	nise															
.6-7	Intel	32x 2S CLX 8260L	CLX 8260L	64			TensorFlow						[1]	14.43	<u>details</u>	code	none
.6-8	NVIDIA	DGX-1			Tesla V100	8	MXNet, NGC19.05	115.22					[1]		details	code	none
.6-9	NVIDIA	DGX-1			Tesla V100	8	PyTorch, NGC19.05		22.36	207.48	20.55	20.34	[1]		details	<u>code</u>	none
.6-10	NVIDIA	DGX-1			Tesla V100	8	TensorFlow, NGC19.05						[1]	27.39	details	<u>code</u>	none
.6-11	NVIDIA	3x DGX-1			Tesla V100	24	TensorFlow, NGC19.05						[1]	13.57	details	<u>code</u>	none
.6-12	NVIDIA	24x DGX-1			Tesla V100	192	PyTorch, NGC19.05			22.03			[1]		details	<u>code</u>	none
.6-13	NVIDIA	30x DGX-1			Tesla V100	240	PyTorch, NGC19.05		2.67				[1]		details	code	none
.6-14	NVIDIA	48x DGX-1			Tesla V100		PyTorch, NGC19.05				1.99		[1]		details	code	none
.6-15	NVIDIA	60x DGX-1			Tesla V100	480	PyTorch, NGC19.05					2.05	[1]		details	code	none
.6-16	NVIDIA	130x DGX-1			Tesla V100	1040	MXNet, NGC19.05	1.69					[1]		details	code	none
.6-17	NVIDIA	DGX-2			Tesla V100	16	MXNet, NGC19.05	57.87					[1]		details	<u>code</u>	none
.6-18	NVIDIA	DGX-2			Tesla V100	16	PyTorch, NGC19.05		12.21	101.00	10.94	11.04	[1]		details	<u>code</u>	none
.6-19	NVIDIA	DGX-2H			Tesla V100	16	MXNet, NGC19.05	52.74					[1]		details	<u>code</u>	none
.6-20	NVIDIA	DGX-2H			Tesla V100		PyTorch, NGC19.05		11.41	95.20		9.80	[1]		<u>details</u>	<u>code</u>	none
.6-21	NVIDIA	4x DGX-2H			Tesla V100	64	PyTorch, NGC19.05		4.78	32.72			[1]		details	<u>code</u>	none
.6-22	NVIDIA	10x DGX-2H			Tesla V100	160	PyTorch, NGC19.05					2.41	[1]		details	code	none
.6-23	NVIDIA	12x DGX-2H			Tesla V100		PyTorch, NGC19.05			18.47			[1]		<u>details</u>	<u>code</u>	none
.6-24	NVIDIA	15x DGX-2H			Tesla V100		PyTorch, NGC19.05		2.56				[1]		details	<u>code</u>	none
.6-25	NVIDIA	16x DGX-2H			Tesla V100	256	PyTorch, NGC19.05				2.12		[1]		details	<u>code</u>	none
.6-26	NVIDIA	24x DGX-2H			Tesla V100	384	PyTorch, NGC19.05				1.80		[1]		details	<u>code</u>	none
.6-27	NVIDIA	30x DGX-2H, 8 chips each			Tesla V100	240	PyTorch, NGC19.05		2.23				[1]		<u>details</u>	<u>code</u>	none
).6-28	NVIDIA	30x DGX-2H			Tesla V100	480	PyTorch, NGC19.05					1.59	[1]		<u>details</u>	code	none
).6-29	NVIDIA	32x DGX-2H			Tesla V100	512	MXNet, NGC19.05	2.59					[1]		details	code	none
0.6-30	NVIDIA	96x DGX-2H			Tesla V100	1536	MXNet, NGC19.05	1.33					[1]		details	code	none

Baselines

#1 Primary Baseline

- Existing algorithm or system infrastructure
- Main comparison point, usually with same runtime operations
- Beware: Avoid speedup-only results (need absolute numbers for grounding)

#2 Additional Baselines

- Alternative systems with different runtime and compiler
- Usually, not directly comparable but important for grounding
- E.g., SystemDS: R, Julia, Spark, TensorFlow, PyTorch
- Potential hindering factors: commercial and closed-source systems, software licenses

Problem of Weak Baselines

- Authors want to show improvements
- Successive improvements over state-of-the-art don't add up

[Timothy G. Armstrong, Alistair Moffat, William Webber, Justin Zobel: Improvements That Don't Add Up: Ad-Hoc Retrieval Results Since 1998. **CIKM 2009**]

[Maurizio Ferrari Dacrema, Paolo Cremonesi, Dietmar Jannach: Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches. **RecSys 2019**]

Presentation – Experimental Setting

_

Hardware Selection

- Multiple nodes for distributed computation
- Avoid too outdated HW (irrelevance)

Find Balanced Level of Detail

Underspecified:

"We ran all experiments on an Intel CPU"

- Over-specified:
 - cat /proc/cpuinfo
 - cat /proc/meminfo

Recommendation

cpu family: 6MemAvailable:784507576 kBmodel: 85Buffers:48070576 kBmodel name: Intel(R) Xeon(R) Gold 6236R CFU @ 2.20GHzCached:6666136 kBstepping: 7:Cached:6666136 kBstepping: 7:Cached:6666136 kBgu MHZ: 2201.563::Active:20382624 kBcaches:: 39424 KB::Inactive:5053928 kBphysical id: 1:::::siblings: 56::::::core id: 30:::::::opu cross: 28::::::::siblings: 125::::::::::fpu: 125:::<t

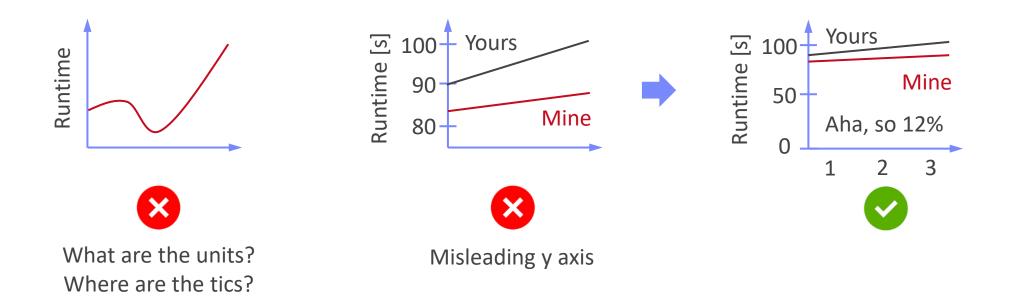
- 0

P mboehm@alpha:

HW components: #nodes, CPUs (#cores, clock freq., cache size), memory, network, I/O

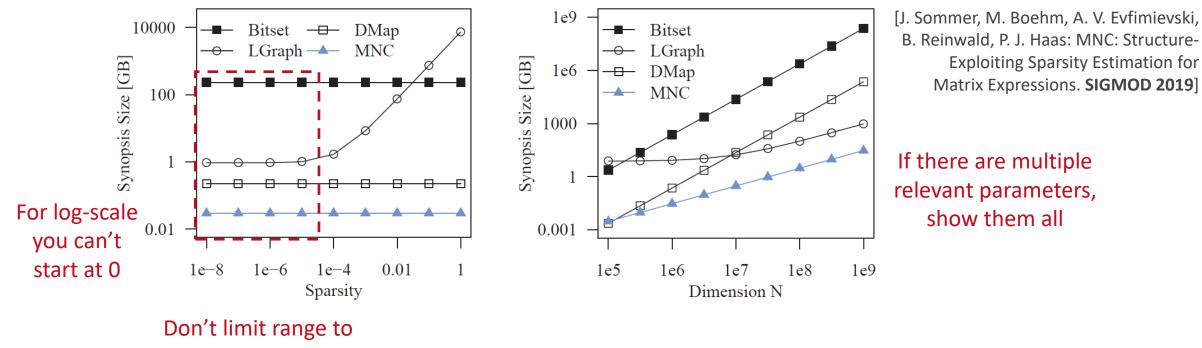
🧬 mboehm@alpha:

- SW components: OS, programming language, versions, other software, compiler flags
- Baselines and configuration → Use recent versions of baseline systems
- Data and workloads with data sizes, parameters, configurations



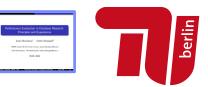
Presentation – Figures

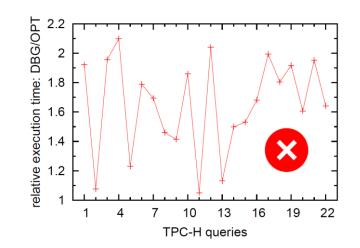
Axes


- Use informative axes labels with units (e.g., Total Execution Time [ms])
- Don't cheat or mislead readers and reviewers
- Start y-axis at 0 for linear scale

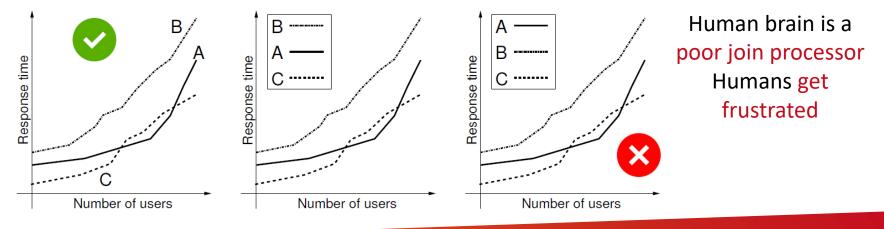
Presentation – Figures, cont.

- Fair Ranges of Parameters
 - Evaluate common ranges of values
 - Don't hide important information


make you look good


Presentation – Figures, cont.

 [I. Manolescu, S/ Manegold: Performance Evaluation in Database Research: Principles and Experiences, ICDE 2008]

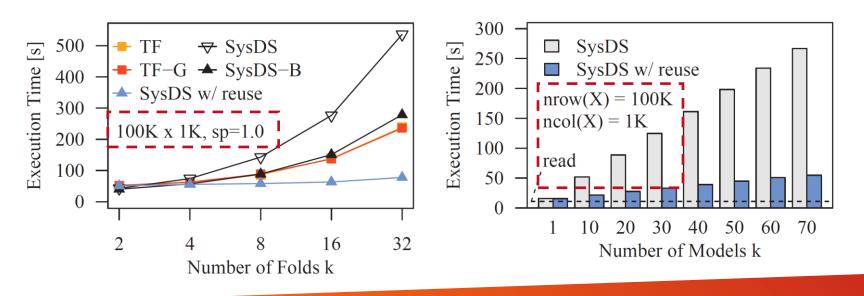

Plots Types

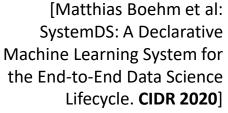
- Barplot for categories
- Plot + Line/linepoints for continuous parameters
- Visible font sizes (similar to text)

Legends

- Order them by appearance
- Attach directly to graph

Presentation – Figures, cont.




Diversity & Consistency

- Diversity: if applicable use mix of different plot types and tables
- Consistency: use consistent colors and names for same baselines

Labeling

- Make the plots self-contained
- Simplifies skimming and avoids join with text

for the Block for Bird	Date formers Like state
	er annan se anna

Presentation – Result Interpretation

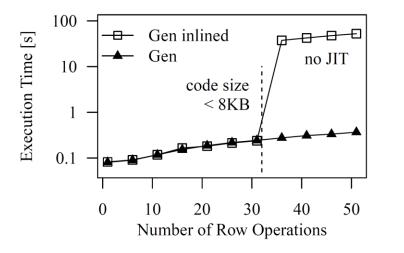
Use the Right OS Tools

- System-specific tracing/statistics
- top / htop / iotop
 (looks CPU bound)
- perf -stat -d ./run.sh
 (no, it's memory-bandwidth bound)

Performance counter sta	ats for './run.sh':
12721364.53 msec	task-clock
463352	context-switches
5455536095415	instructions
335314473273	branches
(62.50%)	
1463380955	branch-misses
2185062643097	L1-dcache-loads
142845949268	L1-dcache-load-misses
3375555316	LLC-loads
1016330404	LLC-load-misses

152.096000108 seconds time elapsed 12052.466691000 seconds user 674.704421000 seconds sys

#	83.640	CPUs utilized	
#	0.036	K/sec	
#	0.14	insn per cycle	(62.50%)
#	26.358	M/sec	
#	0.44%	of all branches	(62.50%)
#	171.763	M/sec	(62.50%)
#	6.54%	of all L1-dcache hits	(62.50%)
#	0.265	M/sec	(50.00%)
#	30.11%	of all LL-cache hits	(50.00%)


Don't just report the results, try to understand and explain them



Presentation – Result Interpretation, cont.

- Use the Right PL Tools / Flags
 - E.g., Understanding
 Java JIT compilation
 - -XX:+PrintCompilation

- E.g., Understanding
 HW Cache Hierarchy (L1i 32KB)
 - -XX:-DontCompileHugeMethods

[Matthias Boehm et al: On Optimizing Operator Fusion Plans for Large-Scale Machine Learning in SystemML. **PVLDB 11(12) 2018**]

Reproducibility and RDM (Research Data Management)

In Computer Science (Data Management)

19 Patrick Damme | FG DAMS | LDE SoSe 2023 – 03 Experiments, Reproducibility & Presentations

Research Data Management (RDM)

Overview

- Ensure reproducibility of research results and conclusions
- Common problem: "All code and data was on the student's laptop and the student left / the laptop crashed."
- Create value for others (compare, reuse, understand, extend)
- EU Projects: Mandatory proposal section & deliverable on RDM plan

Excursus: FAIR Data Principles

- #1 Findable
 - Metadata and data have globally unique persistent identifiers
 - Data described with rich meta data; registered/indexes and searchable

#2 Accessible

- Metadata and data retrievable via open, free and universal comm protocols
- Metadata accessible even when data no longer available

#3 Interoperable

- Metadata and data use a formal, accessible, and broadly applicable format
- Metadata and data use FAIR vocabularies and qualified references

#4 Reusable

Metadata and data described with plurality of accurate and relevant attributes

Clear license, **associated with provenance**, meets community standards

BIFOLD

RDM in Practice @ DAMS Lab

- Code and Artifacts
 - Open-source systems
 - Apache SystemDS: <u>https://github.com/apache/systemds</u>
 - DAPHNE: <u>https://github.com/daphne-eu/daphne</u>
 - Complete code history, src/bin releases
 - LDE/AMLS/DIA programming projects in SystemDS and DAPHNE
 - Additional private GitHub repos for student projects / prototypes
 - Reproducibility for publications: <u>https://github.com/damslab/reproducibility</u>

Central Paper Repository

- All paper submissions with LaTeX sources, figures, reviews, rebuttals, etc.
- All paper-related experiments
 - Archive: append-only experimental results
 - Plots: scripts and figures of plots
 - Results: latest results used for the current plots
 - Scripts: data preparation, baselines, benchmarks

Automate your experiments as much as possible

1 shaled	Quinted and the and approximatio (on larg)	Laked committee and Married
80 M	Initial import old appelments beripts, results, plots, and	3.0
81410	Initiarimport oid equerimente (sarigita meutra, picea, etc)	هر د
8 × 11	Initial important appriments (sergets, results, piets, etc)	5 pe
8 × 2	Initial import old agariments benjets, results, piots, and	5.94
81.410	Initial import del segurinando paright, multito picoto stal	
B +14	Initial import old asperiments (seripts, results, pices, etc)	5.00
in +15	initial import old againments barlyts, results, plots, etcl.	5 pr
B + 78	testiar respect cell aspanierando (saripto, resulto, pitcho, ato)	1 pr
8.47	initial import old apperiments beripts, results plots and	100

_		
10 × 12	Additional apperimental results and scripts	2 years age
in 470	'Updated experimental results micro bend/marks (in/ new sample Eaction)	2 years aga
B-15	Additional experimental meads and scripts.	2 years aga
8.45	Nex experimental neulty and setpts	2 years age
ar (75	Additional experimental results and actipits	2 years age
81.477	New experimental results and adopts	2 years aga
8.00	New experimental results and wrights	2 years age
in (7)	Nex experimental results and adipts	2 years age
8.4	mittal import all experimenta (scripts, results, pluts, etc)	2 years ago
8.40	New experimental results and sergets	2 years age
a -01	Updated aclpts and experimental results	2 years age
a - 12	Spideled adipts and experimental results	2 years aga
B-45	Splaini aripicani esprimerial malte	2 years age
B 454	Spidel and to and operiments (am lang)	2 provo oget
a -0	mittal import alle experimenta (polyra, resulta, pluta, era)	2 years ago
2 material	Spalated and to end experiments (or larg)	2 years age

SIGMOD Reproducibility Process

Overview

- Accepted papers can submit package, verified by committee
- ACM Results Replicated / ACM Artifacts Available labels
- Most Reproducible Paper Award (\$750, visibility)
- #1 Replicability (aka Repeatability)
 - Recreate result data and graphs shown in the final paper
 - Expected: same trend of baseline comparisons, parameter influence

#2 Reproducibility

- Verify robustness of results wrt parameters and environments
- Examples: different data and workload characteristics, hardware

SIGMOD Reproducibility Process, cont.

Ideal Reproducibility Submission

"At a minimum the authors should provide a complete set of scripts to install the system, produce the data, run experiments and produce the resulting graphs along with a detailed Readme file that describes the process step by step so it can be easily reproduced by a reviewer.

The ideal reproducibility submission consists of a master script that:

- 1. installs all systems needed,
- 2. generates or fetches all needed input data,
- 3. reruns all experiments and generates all results,
- 4. generates all graphs and plots, and finally,
- 5. recompiles the sources of the paper
- ... to produce a new PDF for the paper that contains the new graphs. "

Note: It takes time, plan from start

 We prepared for SIGMOD 2019 Repro, but finally, not submitted (ran out of time) [Credit: <u>db-reproducibility</u>. <u>seas.harvard.edu/#Guidelines</u>]

[J. Sommer, M. Boehm, A. V. Evfimievski, B. Reinwald, P. J. Haas: MNC: Structure-Exploiting Sparsity Estimation for Matrix Expressions. **SIGMOD 2019**]

Tools for Automation

Motivation

- Tooling for running artifacts in a self-contained manner
- Metadata storage in semi-structured formats like JSON/XML

Examples

Name	Target	Link
СК	ML Systems	http://ctuning.org
CWL	Analysis Workflows	http://commonwl.org
Popper	Container Workflows	https://github.com/systemslab/popper
ReproZip	General-purpose Bundles	http://reprozip.org
Sciunit	Self-contained Experiments Bundles	http://sciunit.run
Sumatra	Numerical Simulations	https://github.com/open-research/sumatra

Scientific Presentations

In Computer Science (Data Management)

26 Patrick Damme | FG DAMS | LDE SoSe 2023 – 03 Experiments, Reproducibility & Presentations

Goals and Structure

berlin

Typical Goals of a Scientific Presentation

- Make audience aware of and interested in your work → visibility, get your paper cited
- Show that you made significant contributions to relevant research area
- Discuss problem/topic, get feedback from audience, foundation for offline discussion

Structure

- No single best structure, but best practices
- Commonalities with scientific papers
 - Introduction/motivation (including necessary background and related work)
 - Main part (your own contributions)
 - Experimental results
 - Summary & outlook

Limit the Scope

Typical Duration

- Lecture: ~90-120 min
- Thesis defense: ~45 min
- Seminar talk: ~20 min
- Conference talk ~5-15 min

Limit the Scope, You Cannot Talk about Everything

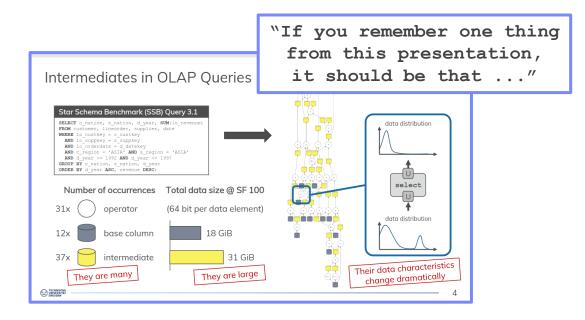
- In terms of breadth
 - E.g., focus on a subset of the contributions
 - E.g., not all experiments
 - But: give overview of everything
- In terms of depth
 - I.e., don't show all details
 - Present simplified results

→ Challenge: Usually not to fill the time, but to not go over time

 \rightarrow Challenge: Select the most important aspects

Know Your Audience

Audience Characteristics


- How much can you expect them to know about your topic? Don't assume too much...
- Need to adjust to you as a speaker in the beginning

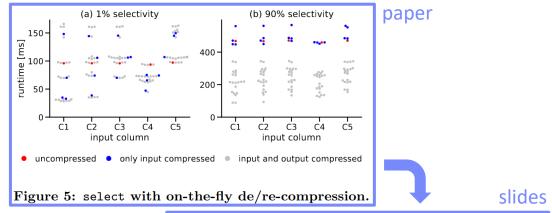
Help Audience Not to Get Lost

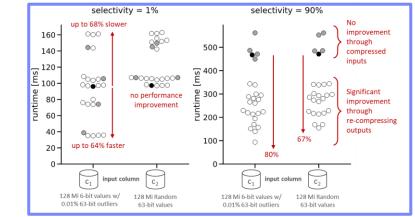
- Clear motivation (don't rush through it)
- Clear presentation outline (after motivation, otherwise hard to comprehend)
- Outline and current position again after each section of the talk
- Repeat important assumptions
- Illustrate theory with concrete (running) examples
- Take necessary time for complex diagrams, formulas, etc.

Steer Audience's Attention

Make the most important points pop out

- (Simple) animations
 - Reveal complex slide contents incrementally
 - But: avoid "Powerpoint Poisoning"




Slide Design

- Avoid Slides Full of Text
- Avoid Complex Formulas and Source Code
 - Unless they really contribute to the understanding
- Avoid too Small Font Size
- Avoid too Many Effects
- Use Varied Layouts
 - Not just lists of bullet points
 - Convey information in diagrams, figures, etc.
- Use Simple Set of Colors
- Use Conscious Line Breaks

Don't Simply Reuse the Figures from Your Paper

Preparing a Presentation

- #1 Planning
 - What are the key takeaways you want to convey?
 - Structure of the talk, running examples

#2 Slide Creation

- Create initial slide deck (doesn't need to be pixel perfect yet)
- Should contain all planned content, consciously divided into slides

#3 Practice

- Rehearse aloud, ideally with audience (ask for maximum criticism)
- Does the timing fit? Is the talk comprehensible?
- #4 Slide Finalization
 - Make the slides pixel-perfect

Iterate steps if necessary

Handling Questions

Basic Mindset

- Always welcome questions as well as feedback/criticism
- Take all questions constructively

You Don't Need to Always Have an Answer

- Answer as good as you can
- Honestly admit if you don't know the answer, e.g., if it needs further investigation

Take longer discussions offline

Don't bore the rest of the audience with too specific discussions

Page Numbers on Slides

Help audience to refer to specific point in your presentation

Prepare Back-up Slides

- Extra slides not shown in the main presentation
- Can be useful when answering questions

Summary and Q&A

berlin

- Experiments and Result Presentation
- Reproducibility and RDM
- Scientific Presentations
- Remaining Questions?
- Summary Paper Submission: Deadline: Jun 19, 2023, 23:59 CEST
- Optional Office Hours
 - Mondays 14:00 18:00 in TEL 811 (and zoom) → ask any seminar-related questions
- Seminar Presentations
 - Starting June 26, 2023, in-person only (no zoom)

