

Seminar Large-scale Data Engineering (LDE) 01 Structure of Scientific Papers

Dr.-Ing. Patrick Damme

Technische Universität Berlin Berlin Institute for the Foundations of Learning and Data Big Data Engineering (DAMS Lab)

Last update: Oct 13, 2024

Announcements/Org

- Hybrid Setting with Optional Attendance
 - In-person in MAR 0.015
 - Virtual via zoom

https://tu-berlin.zoom.us/j/67376691490?pwd=NmlvWTM5VUVWRjU0UGI2bXhBVkxzQT09

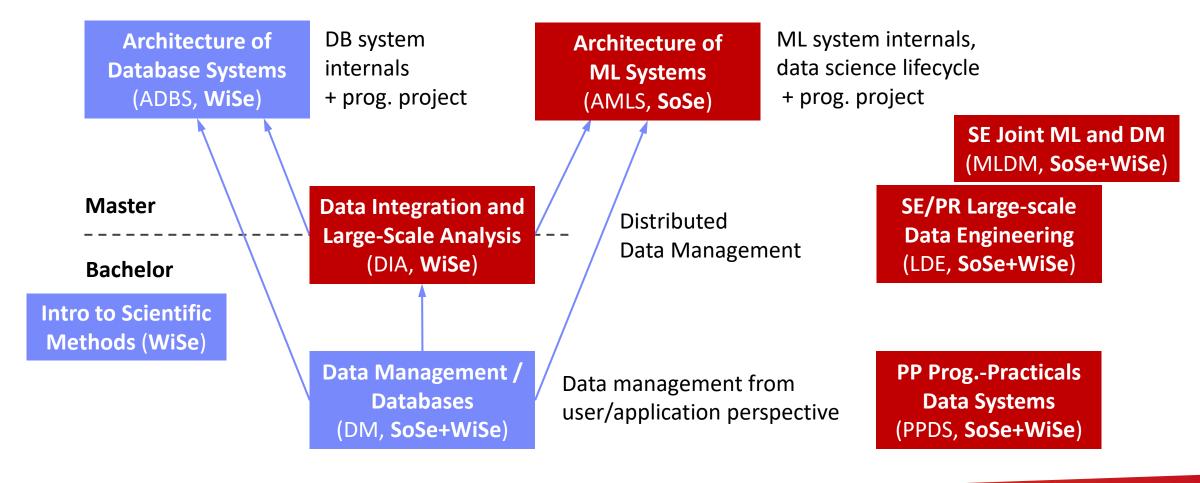
About Me

- Since 10/2022: Postdoc at TU Berlin, Germany
 - FG Big Data Engineering (DAMS Lab) headed by Prof. Matthias Böhm
 - Continuing work on integrated data analysis pipelines
 - Research interests in the fields of database and ML systems (especially compiler & runtime techniques, extensibility)

- 2021-2022: Postdoc at TU Graz & Know-Center GmbH, Austria
 - Data Management group headed by Prof. Matthias Böhm
 - Started work on integrated data analysis pipelines

- 2015-2020: PhD student at TU Dresden, Germany
 - Dresden Database Research Group headed by Prof. Wolfgang Lehner
 - PhD thesis on making complex analytical database queries more efficient through lightweight compression of intermediate results

FG Big Data Engineering (DAMS Lab) – Teaching



Agenda

- Course Organization, Outline, and Deliverables
- Structure of Scientific Papers
- List of Seminar Topics

Course Organization, Outline, and Deliverables

Large-scale Data Engineering: Module Overview

20+5 seats in total

bachelor + master

bachelor-only

berlin

12 students

#41086: LDE Seminar + Project (12 ECTS)

13 students

#41095: Seminar LDE (3)

#41183: Project LDE (9 ECTS)

7 students

Mon, 16:00-18:00

MAR 0.015 & zoom

bachelor-only

Mon, 14:00-16:00 MAR 0.015 & zoom

Seminar LDE

- Reading & writing scientific papers
- Giving presentations on papers
- Summary paper
- Presentation
- Lecturer & seminar mentor

Project LDE

- Building & evaluating prototypes
- Giving presentations on prototypes
- Prototype design/impl/tests/doc
- Presentation
- Project mentors

- → In the context of systems for data engineering, data management, machine learning
- → In combination: Ideal preparation for a bachelor/master thesis with our group

Course Organization

General Contact Person

Dr.-Ing. Patrick Damme (<u>patrick.damme@tu-berlin.de</u>)

Course Website

- https://pdamme.github.io/teaching/2024-25_winter/lde/lde_winter2024-25.html
- One site for seminar and project
- All material, schedule, deadlines

ISIS course

- https://isis.tu-berlin.de/course/view.php?id=39897
- Announcements, discussion forum, polls for topic selection

Language

- Lectures and slides: English
- Communication: English/German
- Submitted paper and presentation: English
- Informal language (first name is fine), immediate feedback is welcome

Semester Schedule & Deadlines

- Three Introductory Lectures (optional)
 - Oct 14: Structure of Scientific Papers
 - Oct 21: Scientific Reading and Writing
 - Oct 28: Experiments, Reproducibility, and Giving Presentations
- Self-organized Seminar Work
 - Office hours for any questions (optional)
- Final Presentations (mandatory)
 - Jan 20, 14:00-18:00: Session #1
 - Jan 27, 14:00-18:00: Session #2
 - Earlier than in previous semesters in response to students' feedback in course evaluation

- List of Seminar Topics
 - Presented today, take your time to select afterwards
- Topic Selection
 - Deadline: Oct 31, 23:59 CET (in 2½ weeks)
 - Ranked list of 5 topics via poll on the ISIS course
 - Global topic assignment based on preferences
 - Notification of assigned topics: Nov 04 (in 3 weeks)
- Submission of Summary Paper
 - Deadline: Jan 13, 23:59 CET (in 13 weeks)
 - Summary paper (PDF) by email to Patrick Damme
- Submission of Presentation Slides
 - Deadline: The day before you present, 23:59 CET
 - Presentation slides (PDF) by email to Patrick Damme

Seminar Deliverables

- Individual Seminar Work
 - 1 student = 1 paper, no teamwork
- Summary Paper (in English)
 - Read and understand selected paper
 - Search for related work to provide some context
 - Write summary paper (4 pages, excl. references)
 - including related work
 - make sure relation to umbrella topic is conveyed
 - LaTeX with given template
- Presentation
 - Summarize your paper
 - 15 min talk + 5 min discussion (stay in time)
 - Audience: engage in the discussion

Grading

- Graded portfolio exam
- **#41086** (seminar + project)
 - 25 pts: summary paper
 - 15 pts: presentation
 - 50 pts: design/impl/tests/doc
 - 10 pts: presentation
- #41095 (seminar-only)
 - 65 pts: summary paper
 - 35 pts: presentation
- Academic Honesty / No Plagiarism (incl LLMs like ChatGPT)

LaTeX Paper Template

Obtain the Template

- https://www.acm.org/publications/proceedings-template
- Download the ZIP archive acmart-primary.zip and unpack it

Select the Right Template

- The archive contains all ACM templates
- Use the sigconf document class

The Easiest Way to Set up Your Own Document

- Copy just the required files to a new directory
- Rename the .tex and .bib file as you like (and adapt the \bibliography { })
- Open the .tex file in a text/LaTeX editor
- Remove example contents, replace it by yours (title, authors, sections, paragraphs, figures, etc.)
- Replace the .bib contents by your BibTeX entries

```
acmart-primary/
samples/
sample-base.bib
sample-sigconf.tex
...
acmart.cls
ACM-Reference-Format.bst
...
```



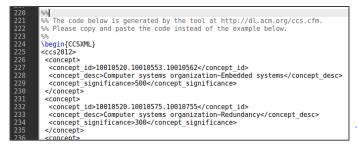
```
lde-summary-paper/
  literature.bib
  summary-paper.tex
  acmart.cls
  ACM-Reference-Format.bst
```


LaTeX Paper Template

ACM acmart template document class sigconf (double-column)

CCS concepts

(ACM Computing Classification System)
Select concepts at http://dl.acm.org/ccs.cfm
and insert generated code:



Copyright notice <

Just keep as it is (ignore the dummy data)

Teaser image

Not required (especially no photograph)

Keywords

Specify meaningful keywords

% Keywords. The author(s) should pick words that accurately describe
the work being presented. Separate the keywords with commas.

keywords{datasets, neural networks, gaze detection, text tagging}

ACM reference format

Just keep as it is (ignore the dummy data)

Portfolio Exam Registration

- Portfolio exam registration: Nov 04 Dez 02
 - Binding registration in Moses/MTS
 - Including selection of seminar presentation date (first-come-first-serve)
- Portfolio exam de-registration
 - Until 3 days before the first graded exam part
 - Modules "LDE"/"Seminar LDE": until Jan 10
 - Module "Project LDE": until **Feb 14**
 - De-register yourself in Moses/MTS
 - With sufficient reason: Until the day of the exam
 - In case of sickness etc.
 - Modules "LDE"/"Seminar LDE": until Jan 12
 - Module "Project LDE": until Feb 16

- Missing deadlines/exam without de-registration
 - Zero points in the respective exam part (!)
 - Approach us early in case of problems
- If you don't want to take LDE anymore
 - Let me know asap to give students in the queue a chance to fill in

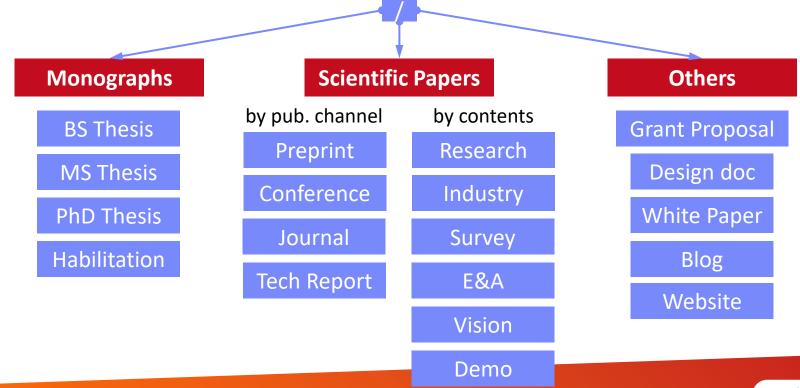
Structure of Scientific Papers

In Computer Science (Data Management)

[Credit: Based on "Introduction to Scientific Writing"/ "01 Structure of Scientific Papers" by Matthias Boehm (TU Graz, winter 2021/22)]

Overview Types of Scientific Writing

- Classification of Scientific/Technical Documents
 - Formal vs informal writing, cumulative?, single vs multi-author, archival vs non-archival publications
- Scientific Writing Skills are crucial
 - Different types of docs share many similarities



Preparation

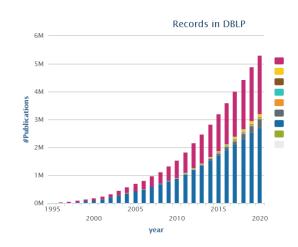
Know your Audience

Get your Workflow in Order

- Writing: LaTeX (e.g., Overleaf, TeXnicCenter), versioning (e.g., git), templates
- Plotting: R (e.g., plot, ggplot), Python (e.g., matplotlib, seaborn), Gnuplot, LaTeX (e.g., pgfplots)
- Figures: e.g., MS Visio/MS Powerpoint, Inkscape → pdf, eps, svg (vector graphics)

Mindset: Quality over Quantity

- Aim for top-tier conferences/journals (act as filter)
- Make the paper useful for others (ideas, evidence, code)



Paper Writing and Publication Process

- Research Writing Cycle
 - Read lots of papers
 - ***** Idea → Research → Writing → Document
 - Idea → Writing/Research → Document
 - Incremental refinement of drafts
- Paper Submission Cycle
 - Blind vs double-blind submission
 - Revisions and Camera-ready
 - Similar: bachelor/master thesis
 - → drafts to advisor / final version

- Example: SIGMOD 2024: Paper Submission Round 2
 - April 15, 2023: Paper submission
 - May 26 28, 2023: Author feedback phase
 - June 20, 2023: Notification of accept/reject/review again
 - July 20, 2023: Revised paper submission
 - August 23, 2023: Final notification of accept/reject
 - tba, 2023: Camera ready due

[Recommended Reading]

[Eamonn Keogh: How to do good research, get it published in SIGKDD and get it cited!, **KDD 2009**]

[Simon Peyton Jones: How to write a great research paper, MSR Cambridge]

Running Example

Compressed Linear Algebra for Large-Scale Machine Learning

Ahmed Elgohary²; Matthias Boehm¹, Peter J. Haas¹, Frederick R. Reiss¹, Berthold Reinwald²

IBM Research - Almaden; San Jose, CA, USA University of Maryland; College Park, MD, USA

ABSTRACT

Large-scale machine learning (ML) algorithms are often iterative, using repeated read-only data access and I/Obound matrix-vector multiplications to converge to an optimal model. It is crucial for performance to fit the data into single-node or distributed main memory. General-purpose, heavy- and lightweight compression techniques struggle to Hence, we initiate work on compressed linear algebra (CLA), in which lightweight database compression techniques are applied to matrices and then linear algebra operations such as matrix-vector multiplication are executed directly on the compressed representations. We contribute effective column compression schemes, cache-conscious operations, and an efficient sampling-based compression algorithm. Our experiments show that CLA achieves in-memory operations perforssed case and good compression ratios that allow us to fit larger datasets into available mem-ory. We thereby obtain significant end-to-end performance improvements up to 26x or reduced memory requirements.

1. INTRODUCTION

Data has become a ubiquitous resource [16]. Large-scale machine learning (ML) leverages these large data collections in order to find interesting patterns and build robust pre-dictive models [16, 19]. Applications range from traditional regression analysis and customer classification to recommen dations. In this context, often data-parallel frameworks such s MapReduce [20], Spark [51], or Flink [2] are used for costtive parallelization on commodity hardware

Declarative ML: State-of-the-art, large-scale ML sims at declarative ML algorithms [12], expressed in high-level languages, which are often based on linear algebra, i.e., matrix multiplications, aggregations, element-wise and statistical operations. Examples—at different abstraction levels are SystemML [21], SciDB [44], Cumulon [27], DMac [50], and TensorFlow [1]. The high level of abstraction gives *Work done during an internship at IBM Research - Almaden.

This work is licensed under the Creative Commons Attribution-NenCommercial-NoDervarieves 4.0 International License. To view a copy of this license, vish http://teatirecommon.org/license/pa-one-42.0.1; for any use beyond those covered by this license, obtain permission by emailing infold/vib.org. Proceedings of the VLDIB Endowment, Vol. 9, No. 12 Copyright 2016 VLDB Endowment 2150-5097116008.

algorithms independent of data and cluster characteristics without worrying about the underlying data representation

Problem of Memory-Centric Performance: Many ML algorithms are iterative, with repeated read-only access to the data. These algorithms often rely on matrix-vector multiplications to converge to an optimal model. Matrixvector multiplications are I/O-bound because they require one complete scan of the matrix, but only two floating poin mance to fit the matrix into available memory because mem ory bandwidth is usually 10x-100x higher than disk band width (but, for matrix-vector, still 10x-40x smaller than peak floating point performance, and thus, matrix-vector remains I/O-bound). This challenge applies to single-node in

Goals of Compressed Linear Algebra: Declarative ML provides data independence, which allows for auto-matic compression to fit larger datasets into memory. A baseline solution would be to employ general-purpose comession techniques and decompress matrices block-wise each operation. However, heavyweight techniques like Gzip are not applicable because decompression is too slow while lightweight methods like Snappy only achieve moder-ate compression ratios. Existing special-purpose compressed matrix formats with good performance like CSR-VI [34] similarly show only modest compression ratios. Our approach builds upon research on lightweight database com such as compressed bitmaps, and sparse matrix representa tions. Specifically, we initiate the study of compressed linear alaehm (CLA), in which database compression techniques are applied to matrices and then linear algebra operation are executed directly on the compressed representations Figure 1 shows the goals of this approach: we want to wider the sweet spot for compression by achieving both (1) perfor mance close to uncompressed in-memory operations and (2 good compression ratios to fit larger datasets into memory

Example paper used in the following

Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, Berthold Reinwald: Compressed Linear Algebra for Large-Scale Machine Learning. PVLDB 2016

[Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, Berthold Reinwald: Scaling Machine Learning via Compressed Linear Algebra. **SIGMOD Record 2017 46(1)**]

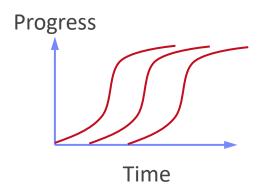
[Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, Berthold Reinwald: Compressed Linear Algebra for Large-Scale Machine Learning. VLDB Journal 2018 27(5)

[Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, Berthold Reinwald: Compressed Linear Algebra for Large-Scale Machine Learning. **Commun. ACM 2019 62(5)**]

Ideas and Topic Selection

Problem-Oriented Research

- Focus on problem/observation first, not your solution
- Discuss early ideas with collaborators and friends
- Develop your taste for good research topics
- Topic selection needs time → pipeline model



Ex. Compressed Linear Algebra

- Problem: Iterative ML algorithms + memory-bandwidth-bound operations
 - → crucial to fit data in memory → automatic lossless compression
- Sub-problems: #rows>>#cols, column correlation, column characteristics
 - → column-wise compression w/ heterogeneous encoding formats

Prototypes and Experiments

Worst Mistake: Schrödinger's Results

- Postpone implementation and experiments till last before the deadline
- No feedback, no reaction time (experiments require many iterations)
- **Karl Popper:** falsifiability of scientific results

Continuous Experiments

- Run experiments during survey / prototype building
- Systematic experiments → observations and ideas for improvements
- Don't be afraid of throwing away prototypes that don't work

Ex. Compressed Linear Algebra

- Data characteristics inspired overall design of encoding schemes
- Initially slow compression → dedicated sampling schemes and estimators
- Initially slow compressed operations → cache-conscious operations, selected operations with better asymptotic behavior

Prototypical Structure of a Scientific Paper

Title & Authors

Sections and Subsections

- Abstract
- Introduction
- Background / Preliminaries
- Main Part
- Main Part 2
- Experiments
- Related Work
- Conclusions
- Acknowledgments
- References
- (Appendix)

- → short overview of problem and solution (part of meta data)
- → context, problem, contributions
- → necessary background for understanding
- → your technical core contributions
- → setting, micro benchmarks, end-to-end benchmarks
- → areas of related work, differences to your own work
- → summary, conclusions, and future work
- → funding agencies, helpful people beyond co-authors
- → list of other works referenced throughout the paper
- → any additional contents (e.g., proves of theorems, more results)

Title and Authors

List of Authors

- E.g., by contribution (main, ..., advisor)
- E.g., by last name
- Affiliations, contact (corresponding author)

Title

- Descriptive yet concise
- Short name if possible → easier to cite and discuss

Compressed Linear Algebra for Large-Scale Machine Learning

Ahmed Elgohary²; Matthias Boehm¹, Peter J. Haas¹, Frederick R. Reiss¹, Berthold Reinwald¹

¹ IBM Research – Almaden; San Jose, CA, USA ² University of Maryland; College Park, MD, USA

SPOOF: Sum-Product Optimization and Operator Fusion for Large-Scale Machine Learning

Tarek Elgamal²; Shangyu Luo³; Matthias Boehm¹, Alexandre V. Evfimievski¹, Shirish Tatikonda⁴; Berthold Reinwald¹, Prithviraj Sen¹

IBM Research – Almaden; San Jose, CA, USA
 University of Illinois; Urbana-Champaign, IL, USA
 Rice University; Houston, TX, USA
 Target Corporation: Sunnyvale, CA, USA

MNC: Structure-Exploiting Sparsity Estimation for Matrix Expressions

Johanna Sommer IBM Germany Matthias Boehm Graz University of Technology Alexandre V. Evfimievski IBM Research – Almaden

Berthold Reinwald IBM Research – Almaden Peter J. Haas UMass Amherst

SliceLine: Fast, Linear-Algebra-based Slice Finding for ML Model Debugging

Svetlana Sagadeeva* Graz University of Technology Matthias Boehm Graz University of Technology

Abstract

% 1. State the problem

Large-scale machine learning (ML) algorithms are often iterative, using repeated readonly data access and I/O-bound matrix-vector multiplications to converge to an optimal model. It is crucial for performance to fit the data into single-node or distributed main memory.

% 2. Say why it's an interesting problem

General-purpose, heavy- and lightweight compression techniques struggle to achieve both good compression ratios and fast decompression speed to enable block-wise uncompressed operations.

% 3. Say what your solution achieves

Hence, we initiate work on compressed linear algebra (CLA), in which lightweight database compression techniques are applied to matrices and then linear algebra operations such as matrix-vector multiplication are executed directly on the compressed representations. We contribute effective column compression schemes, cache-conscious operations, and an efficient sampling-based compression algorithm. Our experiments show that CLA achieves in-memory operations performance close to the uncompressed case and good compression ratios that allow us to fit larger datasets into available memory.

% 4. Say what follows from your solution

We thereby obtain significant end-to-end performance improvements up to 26x or reduced memory requirements.

[Simon Peyton Jones: How to write a great research paper, MSR Cambridge]

ABSTRACT

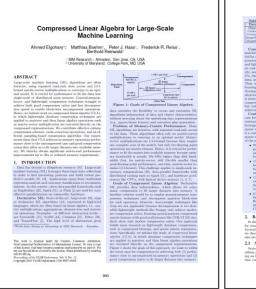
Large-scale machine learning (ML) algorithms are often iterative, using repeated read-only data access and I/Obound matrix-vector multiplications to converge to an optimal model. It is crucial for performance to fit the data into single-node or distributed main memory. General-purpose, heavy- and lightweight compression techniques struggle to achieve both good compression ratios and fast decompression speed to enable block-wise uncompressed operations. Hence, we initiate work on compressed linear algebra (CLA). in which lightweight database compression techniques are applied to matrices and then linear algebra operations such as matrix-vector multiplication are executed directly on the compressed representations. We contribute effective column compression schemes, cache-conscious operations, and an efficient sampling-based compression algorithm. Our experiments show that CLA achieves in-memory operations performance close to the uncompressed case and good compression ratios that allow us to fit larger datasets into available memory. We thereby obtain significant end-to-end performance improvements up to 26x or reduced memory requirements.

23

Introduction

Prototypical Structure

- Context (1 paragraph)
- Problems (1-3 paragraphs)
- [Existing Work (1 paragraph)]
- [Idea (1 paragraph)]
- Contributions (1 paragraph)



Contributions: Our major contribution is to make a case for *compressed linear algebra*, where linear algebra operations are directly executed over compressed matrices. We leverage ideas from database compression techniques and sparse matrix representations. The novelty of our approach is a combination of both, leading towards a generalization of sparse matrix representations and operations. The structure of the paper reflects our detailed technical contributions:

- Workload Characterization: We provide the background and motivation for CLA in Section 2 by giving an overview of Apache SystemML, and describing typical linear algebra operations and data characteristics.
- Compression Schemes: We adapt several columnbased compression schemes to numeric matrices in Section 3 and describe efficient, cache-conscious core linear algebra operations over compressed matrices.
- Compression Planning: In Section 4, we further provide an efficient sampling-based algorithm for selecting a good compression plan, including techniques for compressed-size estimation and column grouping.
- Experiments: Finally, we integrated CLA into Apache SystemML. In Section 5, we study a variety of full-fledged ML algorithms and real-world datasets in both single-node and distributed settings. We also compare CLA against alternative compression schemes.

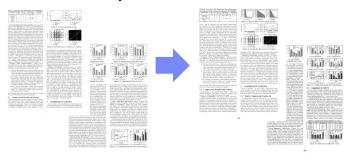
Introduction Matters

 Anchoring: most reviewers reach their opinion after reading introduction and motivation and then look for evidence [Eamonn Keogh: How to do good research, get it published in SIGKDD and get it cited!, **KDD 2009**]

Writing the Paper (and more Experiments)

■ Easily Readable: Quality Time

- Make it easy to skim the paper
 - → paragraph labels, self-explanatory figures (close to text), and structure
- Avoid unnecessary formalism \rightarrow as simple as possible
- Shortening the text in favor of structure improves readability
- Ex. Compressed Linear Algebra
 - Initial SIGMOD submission: 12+3 pages
 - Final PVLDB submission: 12 pages
 (+ more figures, experiments, etc.)



→ 02 Scientific Reading and Writing

Solid, Reproducible Experiments

- Create, use, and share dedicated benchmarks / datasets
- Avoid weak baselines, start early w/ baseline comparisons
- Automate your experiments as much as possible
- Keep repository of all scripts, results, and used parameters

→ 03 Experiments, Reproducibility, and Giving Presentations

Related Work

[Simon Peyton Jones: How to write a great research paper, MSR Cambridge]

- Purpose of a "Related Work"-Section
 - Not a mandatory task or to show you know the field
 - Put you work in context of related areas (~ 1 paragraph each)
 - Discuss closely related work
 - Crisp separation from existing work (what are the differences)

Placement

- Section 2 or Section n-1
- Throughout the paper

Your reader



Give Credit

- Cite broadly, give credit to inspiring ideas, create connections
- Honestly acknowledge limitations of your approach

References

Setup

- Use LaTeX \cite{} and BibTeX
- Use a consistent source of bibtex entries (e.g., DBLP)

```
inproceedings{StonebrakerBPR11,
  author
            = {Michael {Stonebraker et al.}},
 title
            = {{The Architecture of SciDB}},
 booktitle = {{SSDBM}}},
            = \{2011\}
  year
                          VLDB2016.bib
```

\bibliographystyle{abbrv} \bibliography{VLDB2016}

ance benefits when data does not fit into memor hus, we have demonstrated the general feasibility of CLA anning and physical design tuning, (3) alternative con ression schemes, and (4) operations beyond matrix-vector

We have initiated work on compressed linear algebra (CLA), in which matrices are compressed with lightweight techniques and linear algebra operations are performed di-rectly over the compressed representation. We introduced effective column encoding schemes, efficient operations over Thus, we have demonstrated the general headfully of CLA, enabled by declarative ML that thics the underlying playi-cal data representation. CLA generalizes sparse matrix rep-resentations, encoding hoth demonstrates in a universal compressed form. CLA is also broadly applicable to any system that provides blocked matrix representations, linear algebra, and physical data independence. Interesting future work includes (11) full optimizer integration (2) global

- M. Abadi et al. TensorFlow: Large-Scale Mactime Learnin on Heterogeneous Distributed Systems. Co-RR, 2016.
 A. Alexandrov et al. The Stratosphere Platform for Big Data Analytics. VLDB J., 28(6), 2014.
 A. Asbari et al. An Efficient Two-Dimensional Blocking Strategy for Sparse Matric-Vector Multiplication on GPU In ICS (Intl. Conf. on Supercomputing), 2014.

- [38] P. E. O'Neil. Model 204 Archite

Different References Styles

- But, not in footnotes (unless required)
- 8. REFERENCES
 - [1] M. Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. CoRR, 2016.
 - [2] A. Alexandrov et al. The Stratosphere Platform for Big Data Analytics. *VLDB J.*, 23(6), 2014.

References

Alexandrov, A. et al.: The Stratosphere platform for big data [Al14] J. 23/6, 2014.

Arap, O.; Swany, M.: Offloading MPI Parallel Prefix Scan [AS14] the NetFPGA. CoRR abs/1408.4939/, 2014.

References

Jaume Amores. 2013. Multiple instance classification: Review, taxonomy and comparative study. Artificial Intelligence.

Dealing with Feedback / Criticism

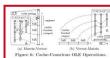
Different Kinds of Feedback

- Casual discussion of early ideas
- Comments on paper drafts
- Reviewer comments (good and bad)
- Always welcome feedback/criticism
- Address all feedback w/ sincere effort

Example Compressed Linear Algebra

- SIGMOD Reviewer 2 (REJECT)
 - "The rewriting for q=Xv seems wrong: To compute q, one takes each row of the matrix X and multiplies it with the vector v."
- PVLDB Reviewer 3 (WEAK ACCEPT)
 - "I kinda disagree with the broad definition of declarative ML [...]."

Algorithm I Caches Conscious OLE Matrix Vector Inputs OLE colons group (n, vector v, q, over range(r, r, vector v)). District Modified vector (q) in over $(p, r, \text{vector } v) \in (r, \text{vector } v)$. If $(r, \text{vector } v) \in (r, \text{vector } v) \in (r, \text{vector } v)$ is $(r, \text{vector } v) \in (r, \text{vector } v) \in (r, \text{vector } v)$. If $(r, \text{vector } v) \in (r, \text{vector } v) \in (r, \text{vector } v)$ is $(r, \text{vector } v) \in (r, \text{vector } v)$. We shall see that $(r, \text{vector } v) \in (r, \text{vector } v) \in (r, \text{vector } v)$ is $(r, \text{vector } v) \in (r, \text{vector } v)$. The shall see that $(r, \text{vector } v) \in (r, \text{vector } v)$ is $(r, \text{vector } v) \in (r, \text{vector } v)$. The shall see that $(r, \text{vector } v) \in (r, \text{vector } v)$ is $(r, \text{vector } v) \in (r, \text{vector } v)$. The shall see that $(r, \text{vector } v) \in (r, \text{vector } v)$ is $(r, \text{vector } v) \in (r, \text{vector } v)$. The shall see that $(r, \text{vector } v) \in (r, \text{vector } v)$ is $(r, \text{vector } v) \in (r, \text{vector } v)$. The shall see that $(r, \text{vector } v) \in (r, \text{vector } v)$ is $(r, \text{vector } v) \in (r, \text{vector } v)$. The shall see that $(r, \text{vector } v) \in (r, \text{vector } v)$ is $(r, \text{vector } v) \in (r, \text{vector } v)$.



non-zero p le vritten to both $R_{\rm L}$ and $R_{\rm L}$ and $R_{\rm L}$. Multi-three operation dynamic promition serve column groups, over the dynamic production of the column groups, and the server of the column group of the columning the offset these Spar-scale matrices sale of column group of the column g

[Matthias Boehm et al.: Declarative Machine Learning - A Classification of Basic Properties and Types. **Corr 2016**.]

Paper Rebuttal and/or Revision

- Rebuttal: seriously consider all feedback (in doubt agree), and answer with facts / ideas how to address the comments
- Revision (conditional accept): address all revision requests

List of Seminar Topics

See list at https://pdamme.github.io/teaching/2024-25_winter/lde/SeminarTopics.pdf

Summary and Q&A

- Course Organization, Outline, and Deliverables
- Structure of Scientific Papers
- List of Seminar Topics (Proposals)
- Remaining Questions?
- Next Lectures
 - 02 Scientific Reading and Writing [Oct 21]
 - 03 Experiments, Reproducibility, and Giving Presentations [Oct 28]

