

Seminar Large-scale Data Engineering (LDE) 03 Experiments, Reproducibility & Presentations

Dr.-Ing. Patrick Damme

Technische Universität Berlin Berlin Institute for the Foundations of Learning and Data Big Data Engineering (DAMS Lab)

Last update: Oct 27, 2024

[**Credit:** Based on "Introduction to Scientific Writing"/ "03 Experiments and Reproducibility" by Matthias Boehm (TU Graz, winter 2021/22)]

Announcements/Org

- Hybrid Setting with Optional Attendance
 - In-person in MAR 0.015
 - Virtual via zoom

https://tu-berlin.zoom.us/j/67376691490?pwd=NmlvWTM5VUVWRjU0UGI2bXhBVkxzQT09 ZOOM

- Reminder: Selection of Seminar and Project Topics Due Oct 31, 23:59 (this week)
 - Polls in the ISIS course
 - Seminar: 5 preferred topics/papers
 - **Project:** 5 preferred topics + preference on team/individual work + optionally team members

Agenda

berlin

- Experiments and Result Presentation
- Reproducibility and RDM
- Scientific Presentations

Experiments and Result Presentation

In Computer Science (Data Management)

[**Credit:** Ioana Manolescu, Stefan Manegold: Performance Evaluation in Database Research: Principles and Experiences, **ICDE 2008**]

Motivation

Worst Mistake: Schrödinger's Results

- Postpone implementation and experiments till last before the deadline
- No feedback, no reaction time (experiments require many iterations)
- Karl Popper: falsifiability of scientific results

Continuous Experiments

- Run experiments during survey / prototype building
- Systematic experiments → observations and ideas for improvements
- Don't be afraid of throwing away prototypes that don't work

Good Research Fires Itself

- Initial experiments give directions for further improvements
- Problem-oriented methodology

Types of Experiments

#1 Exploratory Experiments

- Tests for functional correctness
- Unstructured experiments for initial feedback \rightarrow evaluate feasibility

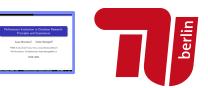
#2 Micro Benchmarks

- Measure specific aspects in controlled and understandable scope
- Bottom-up approach

#3 Benchmarks

- Evaluate on community/your own benchmarks
- Examples: TPC-C, TPC-H, TPC-DS, JOB, MLPerf, TPCx-AI

#4 End-to-end Applications


- Evaluate in larger scope of real datasets and query workloads
- Examples: Customer workload, ML pipelines (data preparation, training, evaluation)

From Idea to Experiments

[I. Manolescu, S. Manegold: Performance Evaluation in Database Research: Principles and Experiences, **ICDE 2008**]

Overview

- Proper planning helps to keep you from "getting lost"
- Repeatable experiments simplify your own work
- There is no single way how to do it right
- There are many ways how to do it wrong

Basic Planning

- Which data / datasets should be used?
- Which workload / queries should be run?
- Which **baselines** are relevant?
- Which hardware & software should be used?
- Metrics: What to measure? How to measure?
- Comparison: How to compare? How to find out what is going on?

Dataset Selection

- Generate data with specific data characteristics
- Benchmarks with data generators (inspired by real-world use cases)
- Systematic evaluation with data size, sparsity, distributions etc.
- Don't use too small data sizes (should the data fit into CPU cache, main memory, single-node storage, cluster, etc.?)

"Real" Data Repositories

- Wide selection of available datasets with different characteristics
- UCI ML Repository: <u>https://archive.ics.uci.edu/</u>
- SuiteSparse Matrix Collection: <u>https://sparse.tamu.edu/</u>
- Google dataset search: <u>https://datasetsearch.research.google.com/</u>
- Common Datasets in ML: ImageNet, Mnist, CIFAR, KDD, Criteo
- Common Datasets in DM: Census, Taxi, Airlines, DBLP, benchmarks etc.

Representative of real data distributions?

Representative for variety of workloads / common case?

Remember: Types of experiments: (exploratory experiments),

micro benchmarks, benchmarks, end-to-end applications

Benchmarks

Overview

- Community- and organization-driven creation of agreed benchmarks
- Benchmarks can define a field and foster innovation
- #1 Data Management

Workloads: Benchmarks

- Query processing: 007, TPC-C, TPC-E, TPC-H, TPC-DS (w/ audit), SSB
- Join ordering: JOB
- #2 "Big Data"
 - MR/Spark: BigBench, HiBench, SparkBench
 - Array Databases: GenBase
- #3 Machine Learning Systems
 - SLAB, DAWNBench, MLPerf, MLBench, AutoML Bench, Meta Worlds, TPCx-AI

[Michael J. Carey, David J. DeWitt, Jeffrey F. Naughton: The oo7 Benchmark. **SIGMOD 1993**]

[http://www.tpc.org/tpch/]

(See AMLS course for details)

Baselines

#1 Primary Baseline

- Existing algorithm or system infrastructure
- Main comparison point, usually with same runtime operations
- Beware: Avoid speedup-only results (need absolute numbers for grounding)

#2 Additional Baselines

- Alternative systems with different runtime and compiler
- Usually, not directly comparable but important for grounding
- E.g., SystemDS: R, Julia, Spark, TensorFlow, PyTorch, ...
- E.g., DAPHNE: the same, plus numpy, pandas, DuckDB, ...
- Potential hindering factors: commercial and

closed-source systems, software licenses

Problem of Weak Baselines

- Authors want to show improvements
- Successive improvements over state-of-the-art don't add up

[Timothy G. Armstrong, Alistair Moffat, William Webber, Justin Zobel: Improvements That Don't Add Up: Ad-Hoc Retrieval Results Since 1998. **CIKM 2009**]

[Maurizio Ferrari Dacrema, Paolo Cremonesi, Dietmar Jannach: Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches. **RecSys 2019**]

Experimental Setting (Hardware & Software)

Hardware Selection

- Multiple nodes for distributed computation
- Avoid too outdated hardware (irrelevance)

Find Balanced Level of Detail

Underspecified:

"We ran all experiments on an Intel CPU"

- Over-specified:
 - cat /proc/cpuinfo
 - cat /proc/meminfo

Recommendation

 put:
 2.201.563
 Active:
 2.003004 kB

 qu Mit:
 2.201.563
 Inactive:
 50053928 kB

 ache size
 3.9424 KB
 Inactive:
 50053928 kB

 physical id :
 1
 Inactive:
 50053928 kB

 core id :
 30
 Inactive:
 100800 kB

 orge id:
 :
 30
 Inactive:
 1003824 kB

 orge id:
 :
 30
 Inactive:
 10038 kB

 opu cores
 :
 :
 10036 kB
 Inactive:
 10036 kB

 initial apicid:
 :
 125
 Mocked:
 10036 kB

 fpu exception:
 :
 yes
 SwapTcal:
 134217724 kB

 fpu exception:
 :
 yes
 Dirty:
 116 kB

 mpat pse36 ciflush tds acpi mmx fxsr sse sse2 ss ht m pbe syscall nx pdpelgb rd
 Mapped:
 15254 kB

 scp im constant_tsc art arch perfmon pebs bts reg good nop! xtopology nonstop ts
 Stab:
 300304 kB

 g max
 :
 :
 :
 199996 kB

 g max
 :
 :
 :
 :

 initial apicid :
 :
 :
 :

mboehm@alpha:

HW components: #nodes, CPUs (#cores, clock freq., cache size), memory, network, I/O

🧬 mboehm@alpha:

- SW components: OS, programming language, versions, other software, compiler flags
- Baselines and configuration → Use recent versions of baseline systems
- Data and workloads with data sizes, parameters, configurations

Metrics & Comparison

- Typical Metrics
 - Runtime (elapsed time) [e.g., ms]
 - Throughput [e.g., GB/s]
 - Memory/storage consumption [e.g., GB]
 - Performance counters [e.g., #L1d-cache misses]
 - Result quality, e.g. accuracy, recall/precision, various error metrics
 - Useful metrics depend on goal of experiment

How to Measure

- Generic tools: e.g., time, perf, htop, ...
- System built-in tools, e.g.
 - DAPHNE: --timing, --statistics
 - SystemDS: -stats <count>

Repeat Measurements & Calculate Mean/Median

Reduce sensitivity to outliers

Ensure Fair Comparison

- Use recent version of all baselines
- Use the right compiler and prog language flags (e.g., optimization levels: g++ -03)
- Tune baselines by hand to get the most out of them
 See their docs for the args, config and tuning knobs

Presentation – Result Interpretation

Use the Right OS Tools

- System-specific tracing/statistics
- top / htop / iotop
 (looks CPU bound)
- perf -stat -d ./run.sh
 (no, it's memory-bandwidth bound)

Performance counter sta	ats for './run.sh':
12721364.53 msec	task-clock
463352	context-switches
5455536095415	instructions
335314473273	branches
1463380955	branch-misses
2185062643097	L1-dcache-loads
142845949268	L1-dcache-load-misses
3375555316	LLC-loads
1016330404	LLC-load-misses

152.096000108 seconds time elapsed 12052.466691000 seconds user 674.704421000 seconds sys

1 1	🚰 mboehm@alpha: ~		- 🗆 X
			86 [1] [1] [2, -4, 1] 97 [1] [2, 5, -6] [3] 88 [1] [3], -2, 3] [3] 90 [1] [3], -7, 3] [3] 90 [1] [3], -7, 3] [3] 91 [1] [3], -7, 3] [3] 92 [1] [3], -7, 3] [3] 93 [1] [3], -7, 3] [3] 93 [1] [3], -7, 3] [3] 93 [1] [3], -7, 3] [3] 94 [1] [3], -7, 3] [3] 95 [1] [3], -7, 3] [3] 96 [3], -7, 3] [3], -7, 3] [3] 96 [3], -7, 3] [3], -7, 3] [3] 104 [3], -7, 3] [3], -7, 3] [3] 105 [3], -7, 3] [3], -7, 3] [3] 106 [3], -7, 3] [3], -7, 3] [3] 107 [3], -7, 3] [3], -7, 3] [3]

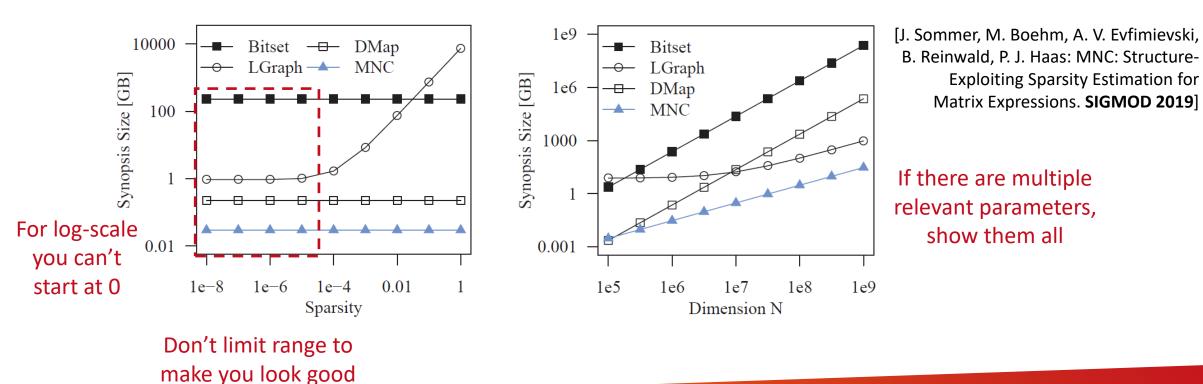
- 83.640 CPUs utilized # 0.036 K/sec # 0.14 insn per cycle # # 26.358 M/sec 0.44% of all branches # # 171.763 M/sec 6.54% of all L1-dcache hits # 0.265 M/sec # 30.11% of all LL-cache hits #
- (62.50%) (62.50%) (62.50%) (62.50%) (62.50%) (50.00%) (50.00%)

Don't just report the results, try to understand and explain them



Presentation – Figures

Axes


- Use informative axes labels with units (e.g., Total Execution Time [ms])
- Don't cheat or mislead readers and reviewers
- Start y-axis at 0 for linear scale

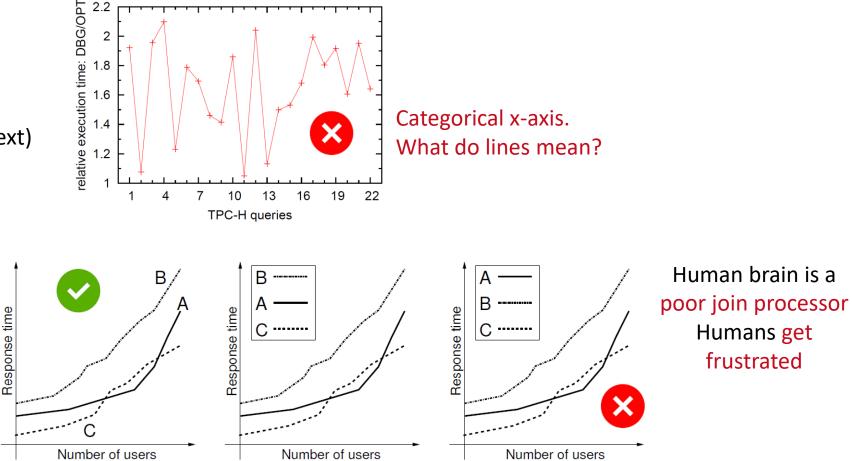
Presentation – Figures, cont.

- Fair Ranges of Parameters
 - Evaluate common ranges of values
 - Don't hide important information



Presentation – Figures, cont.

Plots Types


Legends

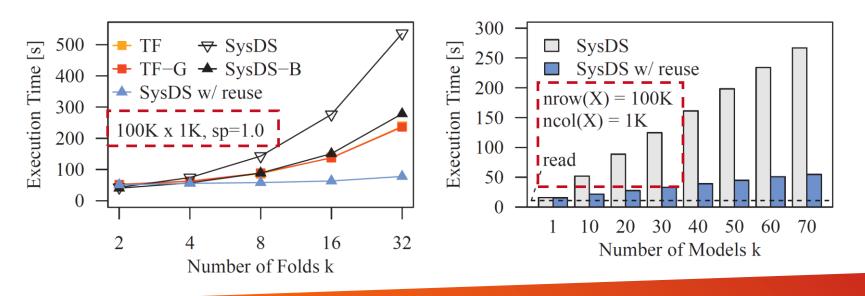
- Barplot for categories
- Plot + Line/linepoints for continuous parameters

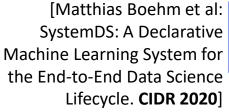
Order them by appearance

Attach directly to graph

Visible font sizes (similar to text)

Presentation – Figures, cont.




Diversity & Consistency

- Diversity: if applicable use mix of different plot types and tables
- Consistency: use consistent colors and names for same baselines

Labeling

- Make the plots self-contained
- Simplifies skimming and avoids join with text

Reproducibility and RDM (Research Data Management)

In Computer Science (Data Management)

18 Patrick Damme | FG DAMS | LDE WiSe 2024/25 – 03 Experiments, Reproducibility & Presentations

Research Data Management (RDM)

Overview

- Ensure reproducibility of research results and conclusions
- Common problem: "All code and data was on the student's laptop and the student left / the laptop crashed."
- Create value for others (compare, reuse, understand, extend)
- EU Projects: Mandatory proposal section & deliverable on RDM plan

Excursus: FAIR Data Principles

<u>F</u>indable

- Metadata and data have globally unique persistent identifiers
- Data described with rich meta data; registered/indexed and searchable

<u>A</u>ccessible

- Metadata and data retrievable via open, free and universal comm protocols
- Metadata accessible even when data no longer available

Interoperable

- Metadata and data use a formal, accessible, and broadly applicable format
- Metadata and data use FAIR vocabularies and qualified references

<u>R</u>eusable

Metadata and data described with plurality of accurate and relevant attributes

Clear license, **associated with provenance**, meets community standards

RDM in Practice @ DAMS Lab

- Code and Artifacts
 - Open-source systems
 - Apache SystemDS: <u>https://github.com/apache/systemds</u>
 - DAPHNE: <u>https://github.com/daphne-eu/daphne</u>
 - Complete code history, src/bin releases
 - LDE/AMLS/DIA programming projects in SystemDS and DAPHNE
 - Additional private GitHub repos for student projects / prototypes
 - Reproducibility for publications: <u>https://github.com/damslab/reproducibility</u>

Central Paper Repository

- All paper submissions with LaTeX sources, figures, reviews, rebuttals, etc.
- All paper-related experiments
 - Archive: append-only experimental results
 - Plots: scripts and figures of plots
 - Results: latest results used for the current plots
 - Scripts: data preparation, baselines, benchmarks

→ Automate your experiments as much as possible

SIGMOD Reproducibility Process

Overview

- Accepted papers can submit package, verified by committee
- "Artifacts Available", "Artifacts Evaluated Reusable", "Results Replicated" badges
- Most Reproducible Paper Award (\$750, visibility)
- #1 Artifact Availability and Evaluation (aka Repeatability)
 - **Expected:** Prototype system, input data(gen), experiments, diagram creation
 - Ideally: Exceed minimal functionality, clear docs, facilitate reuse

#2 Reproducibility

- Central results and claims supported by the submitted experiments
- **Expected:** similar behavior to that shown in the paper

SIGMOD Reproducibility Process, cont.

Ideal Reproducibility Submission

"At a minimum the authors should provide a complete set of scripts to install the system, produce the data, run experiments and produce the resulting graphs along with a detailed Readme file that describes the process step by step so it can be easily reproduced by a reviewer.

The ideal reproducibility submission consists of a master [sic] script that:

- 1. installs all systems needed,
- 2. generates or fetches all needed input data,
- 3. reruns all experiments and generates all results,
- 4. generates all graphs and plots, and finally,
- 5. recompiles the sources of the paper
- ... to produce a new PDF for the paper that contains the new graphs. "

Note: It takes time, plan from start

Scientific Presentations

In Computer Science (Data Management)

24 Patrick Damme | FG DAMS | LDE WiSe 2024/25 – 03 Experiments, Reproducibility & Presentations

Goals and Structure

berlin

Typical Goals of a Scientific Presentation

- Make audience aware of and interested in your work → visibility, get your paper cited
- Show that you made significant contributions to relevant research area
- Discuss problem/topic, get feedback from audience, foundation for offline discussion

Structure

- No single best structure, but best practices
- Commonalities with scientific papers
 - Introduction/motivation (including necessary background)
 - Main part (your own contributions)
 - Experimental results
 - Summary & outlook

Limit the Scope

Typical Duration

- Lecture: ~90-120 min
- Thesis defense: ~45 min
- Seminar talk: ~20 min
- Conference talk ~5-15 min

Limit the Scope, You Cannot Talk about Everything

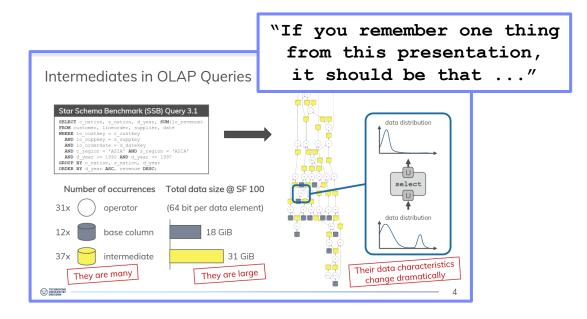
- In terms of breadth
 - E.g., focus on a subset of the contributions
 - E.g., not all experiments
 - But: give overview of everything
- In terms of depth
 - I.e., don't show all details
 - Present simplified results

→ Challenge: Usually not to fill the time, but to not go over time

ightarrow Challenge: Select the most important aspects

Know Your Audience

Audience Characteristics


- How much can you expect them to know about your topic? Don't assume too much...
- Need to adjust to you as a speaker in the beginning

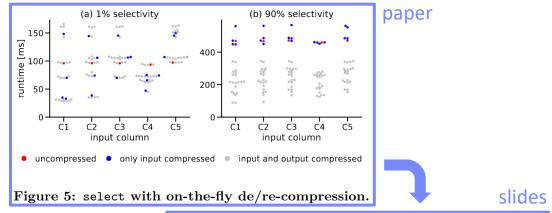
Help Audience Not to Get Lost

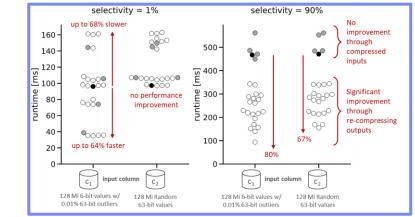
- Clear motivation (don't rush through it)
- Clear presentation outline (after motivation, otherwise hard to comprehend)
- Outline and current position again after each section of the talk
- Repeat important assumptions
- Illustrate theory with concrete (running) examples
- Take necessary time for complex diagrams, formulas, etc.

Steer Audience's Attention

Make the most important points pop out

- (Simple) animations
 - Reveal complex slide contents incrementally
 - But: avoid "Powerpoint Poisoning"




Slide Design

- Avoid Slides Full of Text
- Avoid Complex Formulas and Source Code
 - Unless they really contribute to the understanding
- Avoid too Small Font Size
- Avoid too Many Effects
- Use Varied Layouts
 - Not just lists of bullet points
 - Convey information in diagrams, figures, etc.
- Use Simple Set of Colors
- Use Conscious Line Breaks

Don't Simply Reuse the Figures from Your Paper

Preparing a Presentation

- #1 Planning
 - Who's your audience?
 - What are the key takeaways you want to convey?
 - Structure of the talk, running examples

#2 Slide Creation

- Create initial slide deck (doesn't need to be pixel-perfect yet)
- Should contain all planned content, consciously divided into slides

#3 Practice

- Rehearse aloud, ideally with audience (ask for max constructive criticism)
- Does the timing fit? Is the talk comprehensible?
- #4 Slide Finalization
 - Make the slides pixel-perfect

Iterate steps if necessary

Handling Questions

Basic Mindset

- Always welcome questions as well as feedback/criticism
- Take all questions constructively

You Don't Need to Always Have an Answer

- Answer as good as you can
- Honestly admit if you don't know the answer, e.g., if it needs further investigation

Take longer discussions offline

Don't bore the rest of the audience with too specific discussions

Page Numbers on Slides

Help audience to refer to specific point in your presentation

Prepare Back-up Slides

- Extra slides not shown in the main presentation
- Can be useful when answering questions

Summary and Q&A

berlin

- Experiments and Result Presentation
- Reproducibility and RDM
- Scientific Presentations
- Remaining Questions?
- Seminar/Project Topic Selection by Oct 31, 23:59 (this week)
- Seminar/Project Submission Deadlines & Presentation Dates on Course Website
- Self-organized Seminar/Project Work
- Optional Consultation Hours
 - Seminar: Mondays 14:00 16:00 hybrid in room B 120 (until further notice) and zoom
 - Project: Arrange individual office hours with project mentor

