
Patrick Damme | FG DAMS | LDE WiSe 2024/25 – List of Project Topics1

List of Project Topics (Proposals)

Last update: Oct 14, 2024

Patrick Damme | FG DAMS | LDE WiSe 2024/25 – List of Project Topics2

Most LDE Projects in the Context of Two Open-source Systems

▪ DAPHNE EU-project
https://github.com/daphne-eu/daphne

▪ Focus on integrated data analysis pipelines

▪ Project implementation mainly in C++

▪ Apache SystemDS
https://github.com/apache/systemds

▪ Focus on the end-to-end data science lifecycle

▪ Project implementation mainly in Java and DML

https://github.com/daphne-eu/daphne
https://github.com/apache/systemds

Patrick Damme | FG DAMS | LDE WiSe 2024/25 – List of Project Topics3

Topics in DAPHNE

Implementation mainly in C++

Patrick Damme | FG DAMS | LDE WiSe 2024/25 – List of Project Topics4

▪ Motivation
▪ When the data to analyze resides in a relational database, it must be exported to a file (e.g., CSV)

before it can be read in DAPHNE, which is inefficient

▪ Task (in C++)
▪ Extend DAPHNE’S existing sql() function, such that it can process the given query over an existing database

inside an existing DBMS instance (e.g., DuckDB, MySQL, PostgreSQL, …)

▪ Implement and compare different methods to import the query result in DAPHNE (e.g., ODBC, ConnectorX, …)

▪ More information & hints
▪ https://github.com/daphne-eu/daphne/issues/856

▪ Contact: Patrick Damme

#856: Integration of DAPHNE with Database Systems

https://github.com/daphne-eu/daphne/issues/856

Patrick Damme | FG DAMS | LDE WiSe 2024/25 – List of Project Topics5

▪ Motivation
▪ Data science workflows are exploratory by nature; thus, variants of the same workflow are executed repeatedly,

although they often access the same data set files

▪ When loading a data set file, a lot of information needs to be found out by the system (e.g., column types,

separator positions in CSV files, number formats etc.), which makes reading a file more expensive

▪ Task (in C++)
▪ Explore different means to retain information gathered about a data set file across independent executions

of a DaphneDSL script for future reuse; these could range from reusing the detected column types over creating

suitable indexes to replicating the required part of the data in a more I/O-efficient format on storage

▪ Think of meaningful schemes to exploit a given storage budget for the most useful information

▪ Detect changes to the data set outside of DAPHNE and invalidate the auxiliary information as required

▪ More information & hints
▪ https://github.com/daphne-eu/daphne/issues/857

▪ Contact: Patrick Damme

#857: Speed-up Repeated Read of Data Set Files w/ Storage Budget

https://github.com/daphne-eu/daphne/issues/857

Patrick Damme | FG DAMS | LDE WiSe 2024/25 – List of Project Topics6

▪ Motivation
▪ String data is commonplace in real-world data sets, and DAPHNE supports string-values matrices/frames

▪ There are many different ways to represent strings (or a sequence of string) with different trade-offs regarding

efficiency (memory footprint, runtime of various operations) and simplicity

▪ Task (in C++)
▪ Implement and compare additional, more advanced string representations as new value types in DAPHNE

▪ A range of typical operations should be supported on these types (e.g., comparison, transformations, concat, …)

▪ Exploit data characteristics to design efficient algorithms on string-valued matrices/frames

▪ Examples include: Umbra strings, dictionary encoded strings, prefix-encoded strings, etc.

▪ More information & hints
▪ https://github.com/daphne-eu/daphne/issues/858

▪ Contact: Patrick Damme

#858: Compare Different String Representations

https://github.com/daphne-eu/daphne/issues/858

Patrick Damme | FG DAMS | LDE WiSe 2024/25 – List of Project Topics7

▪ Motivation
▪ By default, DAPHNE lowers domain-specific operations from linear and relational algebra operations

to calls to pre-compiled C++ kernels (physical operators).

▪ However, being based on MLIR/LLVM, on-the-fly code generation for these operations is an alternative option.

▪ Interestingly, both approaches have their pros and cons, so a hybrid approach (choosing pre-compiled kernels

for some operations and using code generation for others) is desirable.

▪ Task (in C++)
▪ Extend DAPHNE’s existing proof-of-concept for a hybrid compilation chain by additional features such as:

▪ Support for the Frame data type and relational algebra operations thereon

▪ Support for sparse matrix data types (e.g., CSR) and linear algebra operations thereon

▪ Support for zero-copy views into row/column segments of matrices and frames

▪ Integration of code-generated operations with DAPHNE’s vectorized pipelines

▪ Automatic decision on whether to use a pre-compiled kernel or to generate code

▪ More information & hints
▪ https://github.com/daphne-eu/daphne/issues/691

▪ Contact: Philipp Ortner

#691: Hybrid Compilation

https://github.com/daphne-eu/daphne/issues/691

Patrick Damme | FG DAMS | LDE WiSe 2024/25 – List of Project Topics8

▪ Motivation
▪ By default, DAPHNE lowers domain-specific operations from linear and relational algebra operations

to calls to pre-compiled C++ kernels (physical operators).

▪ However, being based on MLIR/LLVM, on-the-fly code generation for these operations is an alternative option,

which could, e.g., simplify targeting hardware accelerators through existing MLIR/LLVM backends.

▪ Task (in C++)
▪ Implement a proof-of-concept for a compilation pipeline in DAPHNE, which only involves code-generated

operations, thereby reducing the compatibility challenges of a hybrid compilation chain.

▪ For simplicity, you can focus on linear algebra operations, supporting dense and sparse matrices.

▪ The resulting code may target x86 CPUs or, optionally CUDA-enabled GPUs.

▪ More information & hints
▪ Working on the GPU aspect is optional and requires a GPU with CUDA support

▪ https://github.com/daphne-eu/daphne/issues/693

▪ Contact: Philipp Ortner

#693: Codegen-only Compilation Pipeline for LA Operations

https://github.com/daphne-eu/daphne/issues/693

Patrick Damme | FG DAMS | LDE WiSe 2024/25 – List of Project Topics9

▪ Motivation
▪ Any complex system requires a good test coverage to detect bugs and performance regressions

▪ To achieve this, writing test cases should be easy and their execution automated as much as possible

▪ DAPHNE already has a lot of unit and script-level tests, however, some important aspects are still missing

▪ Task (in C++, DaphneDSL, bash, Python)
▪ Introduce an infrastructure for automated performance regression tests, that run certain benchmark

DaphneDSL scripts automatically, compare the runtime performance to previous runs, and report regressions

▪ DSL fuzzing: Automatically generate random, simple and complex, equivalent scripts in DaphneDSL/DaphneLib

and a baseline (e.g., Python, Julia, R) and compare their outputs to each other to find bugs in DAPHNE.

▪ Introduce a means to easily write a high number of script-level test cases that are executed independently of

each other

▪ More information & hints
▪ https://github.com/daphne-eu/daphne/issues/859

▪ The focus of this task is on improving the test infrastructure, not on adding the actual test cases

▪ Contact: Patrick Damme

#859: Advanced Test Infrastructure

https://github.com/daphne-eu/daphne/issues/859

Patrick Damme | FG DAMS | LDE WiSe 2024/25 – List of Project Topics10

Topics in Apache SystemDS

Implementation mainly in Java and DML (SystemDS’s R-like domain-specific language)

Patrick Damme | FG DAMS | LDE WiSe 2024/25 – List of Project Topics11

▪ Task (in Java and DML)
▪ Add a new script-level built-in function adasyn() for oversampling the minor class

in imbalanced training data sets via the ADASYN method

▪ SystemDS already implements a built-in function for SMOTE, which can be used as an example

▪ In detail this task should

▪ Start by implementing the corresponding junit tests (for local and spark operations)

▪ Register the new built-in function

▪ Implement the ADASYN built-in function

▪ Evaluate the new method on a number of real datasets

▪ More information & hints
▪ https://issues.apache.org/jira/browse/SYSTEMDS-3777

▪ Contact: Matthias Boehm

#3777: Built-in Function for ADASYN

https://issues.apache.org/jira/browse/SYSTEMDS-3777

Patrick Damme | FG DAMS | LDE WiSe 2024/25 – List of Project Topics12

▪ Task (in Java and DML)
▪ Add a natively supported built-in function s=det(A) for computing the determinant of a squared matrix

▪ Internally, these operation can either be implemented through dedicated kernels or a rotation of the matrix and

subsequent row and column sums

▪ In detail, the task should be approached in 3 subsequent PRs (where the 1st PR comprises tests and local ops)

▪ Tests and built-in function registration

▪ Local in-memory operations

▪ Distributed Spark operations

▪ Two or three simplification rewrites

(e.g., det(t(A)) --> det(A), and det(A%*%B) --> det(A)*det(B))

▪ More information & hints
▪ https://issues.apache.org/jira/browse/SYSTEMDS-3778

▪ Contact: Matthias Boehm

#3778: Determinant Computation Primitives

https://issues.apache.org/jira/browse/SYSTEMDS-3778

Patrick Damme | FG DAMS | LDE WiSe 2024/25 – List of Project Topics13

▪ Motivation
▪ SystemDS's random number generation is based on a sequential number generation

of individual blocks of BlockSize x BlockSize

▪ This makes the generation of matrices parallelized at maximum at the number of blocks

▪ This technique is inefficient on GPUs

▪ Task (in Java and DML)
▪ Implement a counter-based random generation of blocks that work well on both CPU and GPU

▪ The ideal implementation produces equivalent results to cuRAND

(https://docs.nvidia.com/cuda/curand/index.html)

▪ Generate values based on the block ID associated to make the generation compatible with Spark,

but inside each block, the values should be generated based on the counter-based number generator

▪ More information & hints
▪ https://issues.apache.org/jira/browse/SYSTEMDS-3556

▪ Contact: Sebastian Baunsgaard

#3556: Counter-based Random Number Generation

https://docs.nvidia.com/cuda/curand/index.html
https://issues.apache.org/jira/browse/SYSTEMDS-3556

Patrick Damme | FG DAMS | LDE WiSe 2024/25 – List of Project Topics14

▪ #3539: Delta Encoding (in Java)
▪ Reader for uncompressed matrices to be encoded into compression statistics as if delta-encoded
▪ Transforming operations such as cumulative sum that have to be wired to transform existing column groups into a delta-encoded column group
▪ Compression taking an uncompressed matrix and encoding a delta-encoded column group from it without materializing the delta encoded

version of the input matrix

▪ #3543: Piece-wise Linear Compression (in Java)
▪ Implement a new column group for piece-wise linear compression that is based on a target loss
▪ The technique compresses a column of values, into smaller line segments
▪ A naive implementation of this in the extreme cases would potentially be 0 target loss, with full allocation of input, and 100% target loss

containing only the average of all values
▪ Other than this, the implementation moves from a lossless array into a lossless piece-wise linear representation via dynamic programming.

▪ #3779: LZW Compression (in Java)
▪ Add a LZW compressed column group, that builds on top of the DDC group, only compressing the mapping data with LZW compression
▪ Use a modified LZW algorithm that returns equal size codes for each code compressed
▪ It should be possible to allocate a temporary mapping for the index to enable efficient processing directly on the compressed representation

▪ More information & hints
▪ https://issues.apache.org/jira/browse/SYSTEMDS-3539, https://issues.apache.org/jira/browse/SYSTEMDS-3543,

https://issues.apache.org/jira/browse/SYSTEMDS-3779
▪ Contact: Sebastian Baunsgaard

Additional Compression Formats for Matrix Column Groups

https://issues.apache.org/jira/browse/SYSTEMDS-3539
https://issues.apache.org/jira/browse/SYSTEMDS-3543
https://issues.apache.org/jira/browse/SYSTEMDS-3779

Patrick Damme | FG DAMS | LDE WiSe 2024/25 – List of Project Topics15

▪ Task (in Java)
▪ This project is to experiment with enabling compression on intermediate values.

▪ Currently, the project supports compression of arbitrary intermediate values.

▪ The goal of this project is to enable this feature, experiment with it across a number of algorithms, and report

results, bugs and interesting findings.

▪ In this process, if regressions or limitations are found, solutions are proposed and implemented.

▪ More information & hints
▪ https://issues.apache.org/jira/browse/SYSTEMDS-3541

▪ Contact: Sebastian Baunsgaard

#3541: Exploratory Workload-aware Compression on Intermediates

https://issues.apache.org/jira/browse/SYSTEMDS-3541

Patrick Damme | FG DAMS | LDE WiSe 2024/25 – List of Project Topics16

▪ Task (in Java)
▪ Add a new instruction.

▪ Assuming M is an matrix and S is a scaling constant, vector, or matrix; then implement a rewrite and instruction

that fuse the following sequence of instructions:

▪ M2 = floor(M * S)

C = compress(M2)

▪ The result should be a CLA compressed quantized matrix according to the scaling values of S

▪ In a passing implementation S is a scalar constant value

▪ More information & hints
▪ https://issues.apache.org/jira/browse/SYSTEMDS-3780

▪ Contact: Sebastian Baunsgaard

#3780: Compression Fused Quantization

https://issues.apache.org/jira/browse/SYSTEMDS-3780

Patrick Damme | FG DAMS | LDE WiSe 2024/25 – List of Project Topics17

▪ Task (in Java and Python)
▪ This task is to optimize the data transfer between SystemDS and Python

▪ Two starting points are string transfer of pandas data frame data both to and from SystemDS and boolean

transfer from SystemDS that could be bit packed

▪ The task includes benchmarking the interface to know how the performance is currently and what the limiting

factors are

▪ There is also an opportunity to try out parallel data transfer between the environments

▪ There are multiple low hanging fruits for this task:

▪ String transfer – This is currently done by transferring a single string at a time, making it unbearably slow

because it calls Py4J once per cell.

▪ Bit packed transfer – This is currently done by unpacking bits from a long into individual bytes, making the

transfer 8x larger than it is supposed to be.

▪ More Information & Hints
▪ https://issues.apache.org/jira/browse/SYSTEMDS-3548

▪ Contact: Sebastian Baunsgaard

#3548: Optimize I/O Path of SystemDS Python Interface

https://issues.apache.org/jira/browse/SYSTEMDS-3548

Patrick Damme | FG DAMS | LDE WiSe 2024/25 – List of Project Topics18

▪ Loop Vectorization (in Java)

▪ Extended Common Subexpression Elimination (in Java)

▪ Extended I/O Framework: Readers/Writers for More File Formats (NetCDF, HDF5, Arrow) (in Java)

▪ #3650 I/O Support for Cloud-optimized GeoTIFF (COG) (in Java)

▪ Various Model Debugging or Data Preprocessing Strategies (in DML)

▪ See also the full list of available student projects in SystemDS:
https://issues.apache.org/jira/secure/Dashboard.jspa?selectPageId=12335852#Filter-Results/12365413

▪ More information & hints
▪ Contact: Matthias Boehm

More Topics in Apache SystemDS

https://issues.apache.org/jira/secure/Dashboard.jspa?selectPageId=12335852#Filter-Results/12365413

Patrick Damme | FG DAMS | LDE WiSe 2024/25 – List of Project Topics19

Stand-alone and Cross-cutting Topics

Patrick Damme | FG DAMS | LDE WiSe 2024/25 – List of Project Topics20

▪ Task (in your language of choice: Zig, C/C++, Java, Python, or Rust)
▪ Compare different methods for compressing time series data

▪ Implement lossless compression methods for comparison, e.g.

▪ Optimal Piecewise Linear Approximation (https://doi.org/10.1109/TSP.2006.875394)

▪ Facebook's Gorilla Lossless Compression (https://www.vldb.org/pvldb/vol8/p1816-teller.pdf)

▪ Mix-Piece Linear Approximation (https://link.springer.com/article/10.1007/s00778-024-00862-z)

▪ More information & hints
▪ Many algorithms are already implemented in TerseTS (a library for time series compression) which we will reuse

▪ The implemented algorithms shall be added to the open-source TerseTS library (written in Zig)

▪ Depending on the team size, other algorithms can be added for implementation

▪ Contact: Carlos E. Muniz Cuza

Benchmarking Polynomial Approximation for Time Series Compression

https://doi.org/10.1109/TSP.2006.875394
https://www.vldb.org/pvldb/vol8/p1816-teller.pdf
https://link.springer.com/article/10.1007/s00778-024-00862-z

Patrick Damme | FG DAMS | LDE WiSe 2024/25 – List of Project Topics21

▪ We are open to additional topic proposals
▪ In the context of data engineering, data management, and machine learning systems

▪ If you are passionate about your idea

▪ More topics in SystemsDS and DAPHNE or other open-source systems possible,

but contributions might be more difficult to get accepted

▪ If you would like to propose your own topic, approach me by email by Oct 31, 23:59 CET;

in any case, also fill in the poll regarding the topic selection with your preferred topics from the list above

Alternative: Propose Your Own Topic Idea

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21

